Wismutverbindungen mit voluminösen, mehrfach alkylierten Cyclopentadienyl-Liganden[☆]

Helmut Sitzmann* und Gotthelf Wolmershäuser

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany

Eingegangen am 18. Oktober 1993

Key Words: Fulvalenes / Bismuth complexes

Bismuth Compounds with Crowded Multiply Alkylated Cyclopentadienyl Ligands*

Bismuth complexes of alkylated cyclopentadienyl ligands are obtained in good yield on treating bismuth(III) halides with tetraisopropylcyclopentadienylsodium or 1,2,4-tri-tert-butylcyclopentadienyllithium. A 1:1 stoichiometric ratio gives the complexes $[Cp^{4i}BiCl_2]$ (1), $[Cp^{3t}BiCl_2]$ (2), and $[Cp^{4i}BiI_2]$ (3) $(Cp^{4i} = C_5 i Pr_4 H, Cp^{3t} = C_5 H_2 t Bu_3 - 1, 2, 4)$. According to X-ray crystal structure analyses, 1 and 3 display dimeric structures with two bridging and two terminal halogeno ligands and η^3 -coordination of the cyclopentadienyl rings. With half an equivalent of tetraisopropylcyclopentadienylsodium BiCl₃ forms [Cp⁴ⁱBi₂Cl₅] (4). An X-ray crystal structure analysis of 3 reveals a central Bi₂Cl₁₀ core of two edge-sharing BiCl₆ octahedra coordinated to two Bi(n⁵-Cp⁴ⁱ) fragments generating a framework of two face-sharing cubes. Reaction of two equivalents of 1,2,4-tri-tert-butylcyclopentadienyllithium with $BiCl_3$ yields deep purple $[Cp_2^{3t}BiCl]$ (5), a bent sandwich complex with an η^3 , η^2 -bonding mode of the cyclopentadienyl ligands. Attempted formation of the octaisopropyl analogue of **5** from BiCl₃ and two equivalents of tetraisopropylcyclopentadienylsodium with elimination of propene gives $[Cp^{4i}Cp^{3i}BiCl]$ (**6**) $(Cp^{3i} = C_3H_2iPr_3)$. Use of monodeuterated tetraisopropylcyclopentadienylsodium in the second substitution step gave pure $[Cp^{4i}([D_1]Cp^{3i})BiCl]$ ($[D_1]6$) proving the absence of ring exchange reactions under the reaction conditions employed and elimination of propene from the second incoming sterically crowded tetraisopropylcyclopentadienyl ring system. The importance of proper choice of solvent and reaction conditions on the formation of alkylated cyclopentadienyl bismuth derivatives is demonstrated by extensive formation of 1,1',3,3',5,5'-hexa-*tert*-butyldihydrofulvalene (**7**) from 1,2,4-tri-*tert*-butylcyclopentadienylsodium and BiCl₃.

Der Synthese der ersten Cyclopentadienyl-Wismut-Verbindungen $(C_5H_4R)_3Bi$ $(R = H, CH_3)$ und $(C_5H_5)_2BiCl$ durch Fischer und Schreiner^[1] folgten erst kürzlich weitere Vertreter dieser Substanzklasse, nämlich $(C_5Me_5)BiBr_2^{[2]}$, $(C_5H_5)Bi_2Cl_5$ und das bislang einzige strukturell charakterisierte Derivat $(C_5H_5)BiCl_2^{[3]}$. Die bisher bekannten Cyclopentadienyl-Wismut-Verbindungen zeigen eine ausgeprägte Tendenz zur Ausbildung von Koordinationspolymeren^[1,2,3], in einigen Fällen wurden spontane Phasenumwandlungen beobachtet^[1,3].

Um den Einfluß eines stark vergrößerten Substituentenvolumens auf den erfolgreichen Prototyp der mehrfach alkylierten Cyclopentadienyle, das Pentamethylderivat, zu untersuchen und dabei dessen elektronische Eigenschaften möglichst wenig zu verändern, haben wir uns dem Studium von Cyclopentadienylen mit vier^[4] oder fünf^[5] Isopropylgruppen sowie Tri-*tert*-butylcyclopentadienyl^[6] zugewandt und berichten in der vorliegenden Arbeit über einige Ergebnisse mit Wismut als Zentralatom. Einen Überblick über die Komplexchemie besonders voluminöser Cyclopentadienyle bieten Schumann und Janiak^[7a] und Okuda^[7b], eine vergleichende Diskussion der Ligandeigenschaften unterschiedlich substituierter Cyclopentadienyle findet sich bei Jutzi^[7e].

Ergebnisse und Diskussion

Eine Übersicht über die durchgeführten Umsetzungen von Bi(III)-Halogeniden mit Lithium- und Natriumsalzen mehrfach alkylierter Cyclopentadiene in unterschiedlichen stöchiometrischen Verhältnissen gibt Schema 1.

Die Umsetzung von BiCl₃ mit einem Äquivalent Tetraisopropylcyclopentadienylnatrium oder 1,2,4-Tri-tert-butylcyclopentadienyllithium in Tetrahydrofuran bei -78°C ergibt in guten Ausbeuten die orangeroten (Cyclopentadienyl)-wismutdihalogenide $[Cp^{4i}BiCl_2]$ (1) und $[Cp^{3t}BiCl_2]$ (2), die in Pentan spärlich, in Diethylether und Toluol mäßig, in Dichlormethan und Tetrahydrofuran leicht löslich sind $(Cp^{4i} = C_5 i Pr_4 H, Cp^{3t} = C_5 H_2 t Bu_3 - 1, 2, 4)$. Die ¹H-NMR-Spektren von 1 und 3 zeigen die typischen Signalmuster der π -koordinierten C₁₇H₂₉-Liganden Cp⁴ⁱ (ein Singulett, zwei Septetts und vier Dubletts im Intensitätsverhältnis 1:2:2:6:6:6:6) und Cp^{3t} (drei Singuletts im Intensitätsverhältnis 2:9:18). Aus BiI₃ und Tetraisopropylcyclopentadienylnatrium wurde [Cp4iBiI2] (3) hergestellt. Die Röntgenstrukturanalyse der Komplexe 1 und 3 (Tab.1) zeigt dimere Moleküle mit zwei unsymmetrischen Halogenobrücken und zwei terminalen Halogenoliganden (Abb.1, 2).

Die Tetraisopropylcyclopentadienylringe sind in den Komplexen 1 und 3 jeweils über drei C-Atome an Bi koor-

Chem. Ber. **1994**, *127*, 1335–1342 © VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994 0009–2940/94/0808–1335 \$ 10.00+.25/0

Abb. 1. Struktur von 1 im Kristall. Ausgewählte Abstände [Å] und Winkel [°]: Bi-Cl1 2.645(4), Bi-Cl2 2.542(4), Bi-Cl1' 3.138(6), Bi-Cl 2.46(1), Bi-C2 2.67(2), Bi-C3 2.85(1), Bi-C4 2.79(2), Bi-C5 2.58(2); Cl1-Bi-Cl2 90.6(2), Bi-Cl1-Bi' 97.6(2), Cl1-Bi-Cl1' 82.4(2)

diniert, von denen das mittlere C-Atom den kürzesten [Bi-C1 = 2.46(1) bzw. 2.48(2) Å], die beiden äußeren einen etwas längeren Abstand zum Zentralatom aufweisen [Bi-C2 = 2.67(2) bzw. 2.63(2), Bi-C5 = 2.58(2) bzw. 2.60(2) Å]. Die restlichen Ringatome C3 und C4 liegen mit 2.85(1) bzw. 2.90(2) und 2.79(2) bzw. 2.83(2) Å Bi-C-Abstand im nichtbindenden Bereich. 1 und 3 können somit als [(η^3 -Cp⁴ⁱ)Bi(Cl)(μ -Cl)]₂ bzw. [(η^3 -Cp⁴ⁱ)Bi(I)(μ -I)]₂ formuliert werden. Im Vergleich dazu liegt das von Frank untersuchte C₅H₅BiCl₂ als Kettenpolymer vor, in dem beide Chloroliganden verbrückende Positionen einnehmen. Die

Abb. 2. Struktur von 3 im Kristall. Ausgewählte Abstände [Å] und Winkel [°]: Bi-I1 3.017(2), Bi-I2 2.911(2), Bi-I1' 3.456(2), Bi-C1 2.48(2), Bi-C2 2.63(2), Bi-C3 2.90(2), Bi-C4 2.83(2), Bi-C5 2.60(2); Bi-I1-Bi' 94.7(1), I1-Bi-I1' 85.3(1)

dort gefundenen unterschiedlichen Bi-Cl-Abstände entsprechen einem Aufbau aus Dimeren $[C_5H_5BiCl_2]_2$, welche durch längere Bi-Cl-Bindungen zur Zick-Zack-Kette verknüpft werden^[3]. Diese zusätzliche Wismut-Halogen-Wechselwirkung wird in 3 durch den sterischen Aufwand des Tetraisopropylcyclopentadienyl-Liganden verhindert. Die Koordination des Fünfringes selbst an das Zentralatom wird durch die Isopropylsubstituenten hingegen nicht in auffälliger Weise beeinflußt. Mit Ausnahme des kürzesten Tab. 1. Angaben zu den Röntgenstrukturanalysen der Komplexe 1, 3, 4 und $5^{[19]}$. Die Messungen wurden mit Mo- K_{α} -Strahlung und Graphitmonochromator an einem Enraf-Nonius-CAD 4- (3) oder Syntex-P4-Vierkreisdiffraktometer (4, 5) durchgeführt. 3 und 4 enthalten ein Molekül Benzol pro Formeleinheit, welches im Fall von Komplex 3 kristallographische Inversionssymmetrie aufweist und bei Verbindung 4 eine kristallographische Spiegelebene besitzt. Wasserstoffatome wurden weder lokalisiert noch rechnerisch berücksichtigt, alle schwereren Atome außer den C-Atomen der bei 3 und 4 enthaltenen Benzolmoleküle wurden anisotrop verfeinert. Strukturlösung mit dem Programm SHELXS, Verfeinerung nach F (Full Matrix) mit SHELX 76

Verbindung	1	3	4	5
Formel	C24H50Bi2Cl4	C40H64Bi2I4	C40H64Bi4Cl10	C14H50BiCl
M.	1026.614	1471.117	1657.30	711.275
Kristallgröße (mm)	$0.45 \times 0.17 \times 0.04$	$0.3 \times 0.2 \times 0.08$	$0.5 \times 0.3 \times 0.2$	$0.37 \times 0.24 \times 0.1$
Raumgruppe	$P_{2_1/c}$ (Nr. 14)	C2/c (Nr. 15)	C2/m (Nr. 12)	P2(1)/n
Gitterkonstanten		,- ()		(-)/
	12.667(5)	33.84(1)	20.627(4)	10.622(4)
	8 3490(10)	8.540(1)	16 703(2)	21.081(5)
	19 524(6)	20 343(6)	9.890(5)	15.671(3)
B (°)	100 87(2)	124.93(1)	117.68(2)	101.65(2)
	2027.7(10)	820(2)	3017(2)	3437(2)
7	4	4	2	2
$D_{\rm L}$ [g cm ⁻³]	1 681	2.03	1.91	1.28
μ (cm ⁻¹)	89 50	94.35	116.31	50.13
Transmission max. %	16.83	22.19	2.90	36.42
Transmission min %	6.25	8 79	1 33	25.19
Absorptionskorrektur	Ψ-scans	Ψ-scans	empirisch ^[a]	empirisch ^[a]
2Θ (°)	54	54	55.9	54.5
Pefleve gemessen	5382	4822	3541	7885
Reflexe unabhängig	4180	3611	3253	6464
Reflexe, signifikant	$4178 > 2\sigma(I)$	$2418 > 2\sigma(I)$	$2408 > 2\sigma(D)$	$3947 > 2\sigma(I)$
Scanmodus	0	1/3 @	$0^{2400} > 20(1)$	0
Meßbereich h	-16 bis 1	-43 bis 43	-1 bis 27	-1 bis 13
Meßbereich k	-1 bis 10	0 bis 10	-1 bis 22	-1 bis 27
Meßbereich 1	-24 bis 23	0 bis 25	-13 bis 11	-20 bis 19
Methode	Direkt	Patterson	Patterson	Direkt
	0.0606	0.065	0.075	0.074
R R	0.0000	0.059	0.109	0.061
Zahl der Parameter	192	193	114	325

^[a] DIFABS.

Bi-C-Abstandes, der bei $C_5H_5BiCl_2$ mit 2.38(3) Å^[3] um ca. 80 bzw. 100 pm kürzer ist als der entsprechende Bi-C-Abstand in 1 bzw. 3, ergeben sich bezüglich der Koordination des Fünfringes an das Wismutzentrum nur geringfügig unterschiedliche Bi-C-Abstände.

Setzt man BiCl₃ mit Tetraisopropylcyclopentadienylnatrium im Verhältnis 2:1 um, so resultiert ein rotes Produkt der Zusammensetzung $[Cp^{4i}Bi_2Cl_5]$ (4), welches weniger leicht löslich ist als die Komplexe 1-3 und aus Benzol in Form dunkelroter Prismen kristallisiert. Die Kristallstrukturanalyse (Abb.3, Tab.1) zeigt einen vierkernigen Wismutkomplex der Zusammensetzung [Cp₂⁴ⁱBi₄Cl₁₀] (4) aus zwei verzerrt-oktaedrischen BiCl6-Einheiten, die über eine gemeinsame Kante verknüpft sind. Je drei Chloroliganden dieses zentralen Bi₂Cl₁₀-Strukturelementes sind zusätzlich an ein Wismut-Cp4i-Fragment koordiniert, so daß eine Spiegelebene und ein Inversionszentrum resultieren. Die Struktur ähnelt stark dem Anion $Bi_4Br_{16}^{4-[8]}$ und dem isovalenzelektronischen Te₄I₁₆^[9]. Weitere Vertreter dieses Strukturtyps sind $Na_2[Sb_2(OH)_2(OSiMe_3)_{10}]^{[10]}$ und [Li-Ti(OiPr)5]2^[11]. Die Wismut-Kohlenstoff-Bindungen im Komplex 4 unterscheiden sich nicht gravierend und liegen mit 2.54(2) bis 2.65(2) Å im bindenden Bereich. Komplex 4 ist damit das erste strukturanalytisch charakterisierte Beispiel mit n⁵-koordiniertem Cyclopentadienyl an Wismut. Die auffallend großen thermischen Ellipsoide der MethylC-Atome C5, C6, C7 und C8 lassen sich durch eine Rotationsfehlordnung der Isopropylgruppe an C2 erklären.

Abb. 3. Struktur von 4 im Kristall. Ausgewählte Abstände [Å] und Winkel [°]: Bi1-C1 2.60(2), Bi1-C2 2.74(2), Bi1-C9 2.55(3), Bi1-Cl2 2.784(9), Bi1-Cl3 2.891(7), Bi2-Cl1 2.469(6); Cl3-Bi1-Cl3' 95.1(1), Cl2-Bi1-Cl3 81.9(1), Bi1-Cl2-Bi2 96.3(2), Bi1-Cl3-Bi2 104.1(2)

Mit zwei Äquivalenten Tri-*tert*-butylcyclopentadienyllithium reagiert BiCl₃ in THF unter Bildung einer Reaktionslösung von tiefem Purpur, aus der sich Bis(1,2,4-tri-*tert*-butylcyclopentadienyl)wismutchlorid (5) in Form von blauschwarzen Kristallen isolieren läßt. Diese Verbindung ist extrem leichtlöslich in allen gebräuchlichen organischen Lösungsmitteln und läßt sich kurzzeitig an der Luft handhaben. Bei schnellem Erhitzen schmilzt 5 bei 145°C unter Zersetzung. Die ¹H- und ¹³C-NMR-Spektren zeigen die typischen Signale des 1,2,4-Tri-*tert*-butylcyclopentadienyl-Liganden, die C,H-Analysenwerte entsprechen der Formulierung [Cp₂^{3t}BiCl]. Kristallisation aus Petrolether ergab prismatische Einkristalle, von denen eine Röntgenstrukturanalyse angefertigt wurde (Abb.4 und 5, Tab.1).

Abb. 4. Struktur von 5 im Kristall. Ausgewählte Abstände [Å] und Winkel [°]: Bi-C1 2.76(2), Bi-C2 2.95(2), Bi-C3 2.89(2), Bi-C4 2.72(2), Bi-C5 2.62(2), Bi-C6 2.80(2), Bi-C7 2.98(2), Bi-C8 2.93(2), Bi-C9 2.76(2), Bi-C10 2.67(2), Bi-Cp^w_{cent}. 2.49 (C1-C5), Bi-Cp^w_{cent}. 2.52 (C6-C10); Winkel zwischen den Ringnormalen 162.2, Cp^w_{cent}. -Bi-Cp^w_{cent}. 145.4

Abb. 5. Perspektivische Projektion von 5 entlang der Linie durch die beiden Ringmittelpunkte

Auffällig ist die unterschiedliche Koordination der beiden Fünfringe. Beide Ringe zeigen das gleiche Muster der Bindungsabstände, das auch bei 3 und bei $C_5H_5BiCl_2^{[3]}$ beobachtet wurde, nämlich einen kurzen Bi–C-Abstand, deutlich längere Abstände zu den beiden benachbarten C-Atomen und nochmals deutlich abgesetzt zwei nichtbindende Abstände von ca. 2.9–3.0 Å. Für den durch C1 bis C5 definierten Fünfring ergibt sich aus der Betrachtung der Bi–C-Abstände eine η^3 -Koordination, der zweite Fünfring (C6 bis C10) ist etwas weiter vom Zentralatom entfernt und kann als η^2 -Ligand eingestuft werden [mit 2.80(2) Å ist Bi–C6 als Grenzfall anzusehen, der Übergang von binden-

den zu nichtbindenden Abständen ist im Fall von Komplex 5 fließend]. Der Winkel zwischen den Ringnormalen beträgt 162.2°, der Winkel Ringmitte-Bi-Ringmitte ist mit 145.4° wesentlich kleiner. Der Unterschied zwischen den beiden Winkeln rührt daher, daß die senkrechte Projektion des Bi-Atoms auf die Ringebene jeweils nicht mit der Ringmitte zusammenfällt, sondern in guter Näherung die Strecke C1-C4 bzw. C6-C9 halbiert. Entsprechendes gilt auch für die Komplexe 1 und 3. Der stereochemische Einfluß des nichtbindenden Elektronenpaares an Bi läßt sich bei 5 nicht nachweisen (Abb.4), aus den Positionen der Ringmittelpunkte und des Chloroliganden ergibt sich an Bi eine Winkelsumme von 360°. Interessant ist der Vergleich mit dem Metallocen-Kation $[(C_5Me_5)_2As]^{+[12]}$. Dort wurde eine deutliche Abgrenzung bindender und nichtbindender As-C-Abstände im Sinne einer η^2 , η^3 -Koordination gefunden, die Winkelung ist mit 143.5° (Winkel zwischen den Ringnormalen) trotz der Abwesenheit eines Halogenoliganden stärker als bei 5.

Setzt man BiCl₃ in THF mit zwei Äquivalenten Tetraisopropylcyclopentadienylnatrium um, so entsteht eine tief dunkelrote Reaktionslösung, aus der sich wiederum ein extrem leichtlöslicher Komplex isolieren läßt. Spektroskopische und analytische Daten belegen, daß nicht das erwartete Bis(tetraisopropylcyclopentadienyl)-wismutchlorid, sondern ein Komplex mit einem Tri- und einem Tetraisopropylcyclopentadienyl-Liganden entstanden ist. Von den beiden möglichen Isomeren **A** und **B** des Triisopropylcyclopentadienyl-Liganden (Abb.6) wird nur eines gebildet, wie das ¹H-NMR-Spektrum von [Cp⁴ⁱCp³ⁱBiCl] (**6**) zeigt (Abb.7).

Abb. 6. Mögliche Isomere des Trüsopropylcyclopentadienyls

Die Umwandlung des eingesetzten Tetraisopropylcyclopentadienyls in Triisopropylcyclopentadienyl verläuft regioselektiv unter Eliminierung von Propen^[13]. Da die Umsetzung von BiCl₃ mit einem Äquivalent Tetraisopropylcyclopentadienylnatrium in glatter Reaktion [Cp⁴ⁱBiCl₂] (1) ergibt, muß die Propen-Eliminierung durch die Einführung des zweiten Fünfringliganden induziert werden. Um zu klären, ob der bereits koordinierte oder der neu eintretende Ringligand der Propen-Eliminierung unterliegt, wurde [Cp⁴ⁱBiCl₂] mit ringdeuteriertem Tetraisopropylcyclopentadienylnatrium umgesetzt. Im Reaktionspunkt kann folglich der neu eingetretene Fünfring an der Deuterium-Markierung erkannt werden. Abb. 8 zeigt die beiden möglichen Reaktionsprodukte und in schematischer Darstellung die Ring-H-Signale der dazugehörigen ¹H-NMR-Spektren.

Ein Vergleich mit dem experimentellen Spektrum des markierten Reaktionsproduktes $[D_1]$ -6 zeigt, daß nicht der im Edukt bereits vorhandene, sondern der neu eintretende Fünfring Propen abspaltet. Diese Reaktion läßt sich als Retro-Friedel-Crafts-Reaktion deuten, welche vermutlich durch den Lewis-Säure-Charakter des eingesetzten

Abb. 7. ¹H-NMR-Spektrum von **6** in C₆D₆. Die für den Vergleich dieser Abbildung mit Abb. 8 wichtigen Signale der Ringprotonen von **6** (Signale zwischen $\delta = 5.8$ und 6.0) sind durch eine schematische Zeichnung hervorgehoben. Signale von Verunreinigungen sind mit einem Sternchen, das Lösungsmittelsignal ist mit "S" gekennzeichnet

Abb. 8. Mögliche Produkte der Umsetzung von 1 mit NaC₅*i*Pr₄D. Isotopomer [D₁]**6A** ist zu erwarten, wenn der an Bi gebundene Tetraisopropylcyclopentadienyl-Ring des Eduktes [(C_5iPr_4H)BiCl₂] bei der Umsetzung Propen eliminiert. Ein Vergleich der für [D₁]**6A** und [D₁]**6B** zu erwartenden Signale im Bereich der Ringprotonen (schematisch eingezeichnet) mit dem entsprechenden Bereich des experimentellen Spektrums (zwischen $\delta = 5.8$ und 6.0) zeigt jedoch, daß nicht der im Edukt bereits vorhandene, sondern der neu eintretende monodeuterierte Fünfringligand unter Abspaltung von Propen in einen Triisopropylcyclopentadienyl-Liganden übergeht. Das Lösungsmittelsignal ist mit "S", Signale von Verunreinigungen sind mit einem Sternchen gekennzeichnet

[Cp⁴ⁱBiCl₂] ermöglicht wird^[14]. Die Propen-Eliminierung kann so verstanden werden, daß ein zweites Tetraisopropyl-cyclopentadienyl-Anion aufgrund seines sterischen Auf-

wandes nicht mit merklicher Reaktionsgeschwindigkeit in der Lage ist, ein Chlorid-Ion im Edukt 1 zu substituieren. Eine durch den Lewis-Säure-Charakter des Wismut-Zen-

Chem. Ber. 1994, 127, 1335-1342

trums ermöglichte Propen-Eliminierung wird unter diesen Bedingungen zum geschwindigkeitsbestimmenden Schritt und führt so zur Bildung von 6. Wenn diese Auffassung zutrifft, so sollte es sich bei dem durch Propen-Eliminierung entstandenen Triisopropylcyclopentadienyl-Ring um das 1,2,3-Isomere handeln, was jedoch bislang noch nicht mit Sicherheit bewiesen werden konnte. Eine interessante Parallele zu dieser Reaktion ist die von Astruc beobachtete Bildung von $[Fe(C_5Me_5)(C_6Et_5H)]^+$ bei dem Versuch, aus $[Fe(C_5Me_5)(CO)_2Br]$, AlCl₃ und Hexaethylbenzol $[Fe(C_5-Me_5)(C_6Et_6)]^+$ herzustellen^[15]. Erwähnenswert in diesem Zusammenhang ist ferner die von Whitmire und Roesky beobachtete C-F-Bindungsspaltung bei der Reaktion von BiCl₃ mit Natrium-2,4,6-tris(trifluormethyl)phenoxid^[16].

Cyclopentadienid-Anionen sind starke Reduktionsmittel. Die Umsetzung von EuCl₃ mit Na(C₅Me₅)^[17a], Li(C₅H₃ $tBu_2-1,3$) mit $I_2^{[17b]}$, CuCl₂ mit Na(C₅H₅)^[17c] und SbCl₃ mit $K(C_5Me_5)^{[17d]}$ sind Beispiele für solche Redoxreaktionen, wobei das Cyclopentadienid-Anion jeweils zum entsprechenden Dihvdrofulvalen-Derivat oxidiert wird. Daß die Kupplung zweier Cyclopentadienyl-Ringe zum Dihydrofulvalen-Derivat auch reduktiv verlaufen kann, zeigt die Umsetzung von C₅Me₅Br mit elementaren Antimon oder Wismut, welche zur Bildung von (C₅Me₅)SbBr₂ bzw. (C₅Me₅)- $BiBr_2$ und $(C_5Me_5)_2$ führt^[2]. Die Reduktion von FeCl₂ mit $Na(C_5 i Pr_5)$ ergibt metallisches Eisen und das freie Radikal $(C_5 i Pr_5)^{\bullet [17e]}$ für das Redoxpotential für $(C_5 i Pr_5)^{-1}/(C_5 i Pr_5)^{\bullet}$ wurde in Acetonitril ein Wert von -1.91 V gegen Ferrocen/ Ferrocenium ermittelt^[17f]. Da eine mögliche Redoxreaktion durch voluminöse Substituenten am Cyclopentadienylring gegenüber der Substitution begünstigt wird, ist die Wahl geeigneter Reaktionsbedingungen entscheidend für die erfolgreiche Umsetzung sterisch überladener, mehrfach alkylierter Cyclopentadienid-Anionen mit BiCl₃. So erhält man bei der Reaktion von zwei Äquivalenten Tri-tert-butylcyclopentadienylnatrium mit BiCl₃ in Petrolether bei Raumtemperatur eine schwach rotbraune Reaktionslösung, die nur Spuren von Bi-Komplexen enthält. Hauptprodukt ist das durch oxidative Kupplung von zwei Tri-tert-butylcyclopentadienyl-Ringen entstandene Hexa-tert-butyldihydrofulvalen 7, welches auch bei der Umsetzung von FeCl₂ mit zwei Äquivalenten Tri-tert-butylcyclopentadienylnatrium gebildet wird^[18].

Schema 2. Reduktion von BiCl₃ mit 1,2,4-Tri(*tert*-butyl)cyclopentadienylnatrium

H. S. dankt Herrn Professor O. J. Scherer für seine stetige Unterstützung und dem Fonds der Chemischen Industrie für einen Sachkostenzuschuß.

Experimenteller Teil

Alle Versuche wurden unter Stickstoff in ausgeheizten Glasgeräten unter Verwendung wasserfreier Lösungsmittel durchgeführt. – Schmelzpunkte: Büchi-510-Schmelzpunktbestimmungsapparatur; abgeschmolzene Probenröhrchen; Meßwerte nicht korrigiert. – NMR: Bruker AMX 400, ¹H (400.13 MHz), ¹³C (100.62 MHz); die Angabe der chemischen Verschiebung (δ -Skala) bezieht sich auf Lösungsmittelsignale. – MS: MAT 90 (Finnigan MAT GmbH). – Elementaranalysen: Fachbereich Chemie der Universität Kaiserslautern, Perkin-Elmer, Elemental Analyzer 240. – Natrium-1,2,4-tri-*tert*-butylcyclopentadienid wurde durch Metallierung von 1,3,5-Tri-*tert*-butylcyclopentadien mit Natriumamid in siedendem Tetrahydrofuran (12 h), Einengen der zentrifugierten Lösung und Waschen des trockenen Rückstandes mit Petrolether als elfenbeinfarbenes Pulver in nahezu quantitativer Ausbeute isoliert.

Dichloro(tetraisopropylcyclopentadienyl)wismut (1): Eine Lösung von 6.45 g (25.2 mmol) Tetraisopropylcyclopentadienylnatrium in 50 ml THF wurde zu einer auf -78°C gekühlten Suspension von 7.89 g (25.0 mmol) BiCl₃ in 50 ml THF getropft, noch 3 h bei dieser Temp. gerührt und in ca. 12 h langsam aufgetaut. Die dunkelrote Lösung wurde zur Trockne eingeengt, der Rückstand zweimal mit je 70 ml Dichlormethan extrahiert und zentrifugiert. Beim Einengen der vereinigten Zentrifugate verblieb ein braunroter, pulvrig-kristalliner Rückstand, der bei 0°C zweimal mit je 10 ml Petrolether gewaschen und i. Vak. getrocknet wurde. Man erhielt 10.78 g (21 mmol, 84%) orangerotes Pulver von 1, Schmp. 158°C (Zers.). $- {}^{1}$ H-NMR: $\delta = 6.38$ (s, Ring-H), 3.40 (sep, 2H, CHMe₂), 3.19 (sep, 2H, CHMe₂), 1.39 [d, 6H, CH(CH₃)₂, J = 7.2 Hz], 1.38 [d, 6H, CH(CH₃)₂, J = 6.8 Hz], 1.31 [d, 6H, CH(CH₃)₂, J = 7.2Hz], 1.19 [d, 6H, CH(CH₃)₂, J = 6.8 Hz]. $- {}^{13}C{}^{1}H$ -NMR: $\delta =$ 138.2 (2 C, CiPr), 136.6 (2 C, CiPr), 106.5 (1 C, Ring-CH), 27.1, 26.2, 26.1, 25.0, 24.0 (Alkyl-C). $- C_{17}H_{29}BiCl_2$ (513.3): ber. C 39.78, H 5.69; gef. C 40.20, H 6.00.

Dichloro(1,2,4-tri-tert-butylcyclopentadienyl)wismut (2): Aus 5.1 g (21.7 mmol) 1,3,5-Tri-tert-butylcyclopentadien und 13.5 ml (21.6 mmol) n-Butyllithium (1.6 mol/l in n-Hexan) in 50 ml THF wurde durch Rühren unter Rückfluß (4 h) eine Lösung von Lithium-1,2,4tri-tert-butylcyclopentadienid hergestellt. Die auf Raumtemp. abgekühlte Lösung wurde zu einer bei -78°C gerührten Suspension von 6.78 g (21.5 mmol) BiCl₃ in 50 ml THF getropft, es wurde 3 h bei dieser Temp. gerührt und in ca. 12 h langsam aufgetaut. Die dunkelrote Lösung wurde zur Trockne eingeengt, der Rückstand zweimal mit je 70 ml Dichlormethan extrahiert und zentrifugiert. Beim Einengen der vereinigten Zentrifugate verblieb ein bräunlich roter, kristalliner Rückstand, der bei 0°C zweimal mit je 10 ml Petrolether gewaschen und i.Vak. getrocknet wurde. Ausb. 9.05 g (17.6 mmol, 82%) orangerotes Pulver von 2, Schmp. 148°C (Zers.). $^{-1}$ H-NMR: $\delta = 6.47$ (s, 2H, Ring-H), 1.39 [s, 18H, C(CH₃)₃], 1.22 [s, 9H, C(CH₃)₃]. - C₁₇H₂₉BiCl₂ (513.3). ber. C 39.78, H 5.69; gef. C 40.70, H 5.90.

Diiodo (tetraisopropylcyclopentadienyl) wismut (3): Eine Lösung von 3.40 g (14.5 mmol) Tetraisopropylcyclopentadienylnatrium in 40 ml THF wurde zu einer auf -78 °C gekühlten Suspension von 8.49 g (14.4 mmol) BiI₃ in 35 ml THF getropft. Es wurde noch 3 h bei dieser Temp. gerührt und in ca. 12 h langsam aufgetaut. Die tief dunkelrote Lösung wurde zur Trockne eingeengt, der Rückstand zweimal mit je 70 ml Dichlormethan extrahiert und zentrifugiert. Beim Einengen der vereinigten Zentrifugate verblieb ein dunkelbrauner, pulvrig-kristalliner Rückstand, der bei 0°C zweimal mit je 10 ml Petrolether gewaschen und i.Vak. getrocknet wurde. Ausb. 8.99 g (12.9 mmol, 90%) dunkelrotes Pulver von 3, Schmp. 178–180°C (Zers.). – ¹H-NMR (C₆D₆): $\delta = 6.46$ (s, Ring-H), 3.31

Chem. Ber. 1994, 127, 1335-1342

(sep, 2H, CHMe₂), 2.97 (sep, 2H, CHMe₂), 1.42 [d, 6H, $CH(CH_3)_2$, J = 6.8 Hz], 1.15 [d, 6 H, $CH(CH_3)_2$, J = 7.1 Hz], 1.13 [d, 6H, CH(CH₃)₂, J = 7.2 Hz], 0.95 [d, 6H, CH(CH₃)₂, J = 6.8Hz]. $- {}^{13}$ C-NMR (C₆D₆): $\delta = 136.3$ (s, 2 C, C*i*Pr), 134.0 (s, 2 C, CiPr), 107.9 (d, 1 C, Ring-CH, J_{CH} = 169 Hz), 28.0 (d, CHMe₂, $J_{\rm CH}$ = 127 Hz), 27.3 (q, CH₃, $J_{\rm CH}$ = 128 Hz), 24.5, 24.4 (überlagert, Kopplungen nicht zugeordnet), 22.5 (q, CH_3 , $J_{CH} = 126$ Hz). - C₁₇H₂₉BiI₂ (696.2): ber. C 29.33, H 4.20; gef. C 29.40, H 4.20.

Decachlorobis(tetraisopropylcyclopentadienyl)tetrawismut (4): Eine Lösung von 1.46 g (5.46 mmol) Tetraisopropylcyclopentadienylnatrium in 25 ml THF wurde zu einer auf -78°C gekühlten Suspension von 3.50 g (11.1 mmol) BiCl₃ in 35 ml THF getropft. Es wurde noch 5 h bei dieser Temp. gerührt und in ca. 12 h langsam aufgetaut. Die rotbraune Lösung wurde mit 50 ml Toluol versetzt, bis zur beginnenden Kristallisation eingeengt und auf -78°C abgekühlt. Das auskristallisierte Produkt wurde bei dieser Temp. nach Dekantieren der Mutterlauge mit einem Gemisch von 5 ml THF und 20 ml Petrolether gewaschen und i. Vak. getrocknet. Man erhielt 3.00 g (1.81 mmol, 66%) orangerotes Pulver von 4, welches mit Tetrahydrofuran kristallisiert, Schmp. 60°C (Zers.). Einkristalle von analysenreinem 4 wurden aus Benzol durch langsames Abkühlen einer bei 60°C gesättigten Lösung erhalten. – ¹H-NMR: δ = 6.29 (s, Ring-H), 3.28 (br, 2H, CHMe₂), 3.01 (sep, 2H, CHMe₂), 1.35 [d, 6H, CH(CH₃)₂, J = 6.7 Hz], 1.18 [d, 6H, CH(CH₃)₂, J =6.9 Hz], 0.96 [d, 6H, $CH(CH_3)_2$, J = 6.9 Hz], 0.89 [d, 6H, $CH(CH_3)_2$, J = 6.4 Hz]. $- C_{34}H_{58}Bi_4Cl_{10}$ (1657.3): ber. C 24.64, H 3.53; gef. C 24.10, H 3.40.

Chlorobis(1,2,4-tri-tert-butylcyclopentadienyl)wismut (5): Aus 6.20 g (26.4 mmol) 1,3,5-Tri-tert-butylcyclopentadien und 16.5 ml (26.4 mmol) n-Butyllithium (1.6 mol/l in n-Hexan) in 50 ml THF wurde durch Rühren unter Rückfluß (4 h) eine Lösung von Lithium-1,2,4-tri-tert-butylcyclopentadienid hergestellt. Die auf Raumtemp. abgekühlte Lösung wurde zu einer bei -78°C gerührten Suspension von 4.16 g (13.2 mmol) BiCl₃ in 50 ml THF getropft. Es wurde noch 4 h bei dieser Temp. gerührt und in ca. 12 h langsam aufgetaut. Das Lösungsmittel wurde i. Vak. entfernt, der Rückstand in 100 ml Petrolether aufgenommen und zentrifugiert. Das tief blauviolette Zentrifugat wurde auf die Hälfte eingeengt, dann auf -78°C abgekühlt. Dabei schied sich eine blauschwarze, polykristalline Kruste von 5 ab, aus der Mutterlauge ließ sich durch Einengen und Abkühlen eine weitere Produktfraktion gewinnen. Ausb. 5.07 g (7.13 mmol, 54%) Schmp. 145°C unter Zersetzung bei schnellem Erhitzen, langsame Zersetzung ab 120°C. – ¹H-NMR (C₆D₆): $\delta =$ 5.92 (s, 2H, Ring-H), 1.54 [s, 18H, C(CH₃)₃], 1.49 [s, 9H, $C(CH_3)_3$]. - ¹³C-NMR (C₆D₆): δ = 142.6 (s, 2 C, CtBu), 141.6 (s, 1 C, CtBu), 111.8 (dd, 2 C, Ring-CH, ${}^{1}J_{CH} = 166.3$, ${}^{3}J_{CH} = 7.1$ Hz), 35.1 (qd, 6 C, CH₃, ${}^{1}J_{CH} = 125.7$, ${}^{3}J_{CH} = 4.6$ Hz), 34.5 (qt, 3 C, CH₃, ${}^{1}J_{CH} = 125.8$, ${}^{3}J_{CH} = 4.6$ Hz), 33.8 (s, 2 C, CMe₃), 31.6 (s, 1 C, CMe₃). $- C_{34}H_{58}BiCl$ (711.3): ber. C 57.42, H 8.22; gef. C 57.30, H 8.10.

Chloro(tetraisopropylcyclopentadienyl)(1,2,3-triisopropylcyclopentadienyl)wismut (6): Eine Lösung von 5.86 g (22.9 mmol) Tetraisopropylcyclopentadienylnatrium in 50 ml THF wurde zu einer bei -78°C gerührten Suspension von 3.59 g (11.4 mmol) BiCl₃ getropft, wobei die Lösung sofort eine dunkelrote Farbe annahm. Nach beendeter Zugabe wurde die Mischung noch 2 h bei dieser Temp. gerührt, dann aufgetaut. Die Lösung wurde i. Vak. eingeengt, der trockene Rückstand zweimal mit je 100 ml Petrolether extrahiert und jeweils zentrifugiert. Die vereinigten Zentrifugate wurden auf etwa 40 ml eingeengt und auf -78°C abgekühlt. Dabei kristallisierte eine dunkelrote Verbindung, welche durch Vakuumsublimation bei 45°C von mit ausgefallenem 1,2,3,4-Tetraisopro-

Chem. Ber. 1994, 127, 1335-1342

pylcyclopentadien befreit wurde. Der Sublimationsrückstand wurde aus Pentan umkristallisiert und ergab 5.20 g (7.77 mmol; 68%) 6, Schmp. 112°C (Zers.). – ¹H-NMR (C₆D₆): $\delta = 5.91$ (s, 2 Ring-H, Cp³ⁱ), 5.86 (s, 1 Ring-H, Cp⁴ⁱ), 3.51 (sep, 1H, CHMe₂, Cp³ⁱ), 3.41 (sep, 2H, CHMe₂), 3.13 (sep, 2H, CHMe₂), 2.95 (sep, 2H, CHMe₂), 1.55 [d, 6H, CH(CH₃)₂, J = 7.0 Hz], 1.36 [d, 6H, $CH(CH_3)_2$, J = 6.8 Hz], 1.31 [d, 6 H, $CH(CH_3)_2$, J = 6.9 Hz], 1.27 [d, 6 H, CH(CH₃)₂, J = 7.2 Hz], 1.24 [d, 6H, CH(CH₃)₂, J = 7.3Hz], 1.16 [d, 6H, CH(CH₃)₂, J = 6.9 Hz], 1.13 [d, 6H, CH(CH₃)₂, J = 6.8 Hz]. $- {}^{13}$ C-NMR (C₆D₆): $\delta = 142.5$ (s, C*i*Pr), 138.0 (s, CiPr), 134.5 (s, CiPr), 130.9 (s, CiPr), 109.8 (d, 2 C, Ring-CH, $J_{CH} = 165.6 \text{ Hz}, \text{ Cp}^{3i}$), 103.8 (d, 2 C, Ring-CH, $J_{CH} = 164.6 \text{ Hz}$, Cp4i), 27.7, 27.2, 26.61, 26.59, 26.49, 26.23, 26.13, 25.93, 25.83, 25.38, 25.23 (Isopropyl-C-Atome, Kopplungen nicht zugeordnet). C₃₁H₅₂BiCl (669.2): ber. C 55.64, H 7.83; gef. C 55.60, H 7.90.

2,2',3,3',5,5'-Hexa-tert-butyldihydrofulvalen (7): 2,49 g (9.7 mmol) Tri-tert-butylcyclopentadienylnatrium wurden unter Eiskühlung in 25 ml Petrolether suspendiert. Die Suspension wurde auf einmal mit 1.51 g (4.8 mmol) BiCl₃ versetzt, in ca. 12 h unter Rühren aufgetaut, dann zentrifugiert. Das braunrötliche Zentrifugat ergab beim Einengen 1.81 g (3.88 mmol; 80%) eines öligen Rückstandes, welcher außer 7 noch geringe Mengen wismuthaltiger Verunreinigungen und 1,3,5-Tri-tert-butylcyclopentadien enthielt. Das Sediment wurde in 30 ml Petrolether suspendiert und nochmals abzentrifugiert. Aus dem gelblichen Zentrifugat wurde beim Einengen ein kristalliner Rückstand von 7 erhalten. Durch Kristallisation bei -30°C aus Diethylether wurde eine analysenreine Probe von 7 gewonnen, Schmp. 140°C (Zers.). – ¹H-NMR; CDCl₃): $\delta = 6.34$ (s, 4H, Ring-H), 1.34 [s, 36H, C(CH₃)₃], 1.30 [s, 18H, C(CH₃)₃]. – ¹³C-NMR (C₆D₆): δ = 151.5 (s, 4 C, CrBu), 141.3 (dd, 4 C, Ring-CH, ${}^{1}J_{CH} = 163.5$, ${}^{3}J_{CH} = 5.3$ Hz), 62.7 (s, 2 C, CtBu), 39.4 (s, 2 C, CMe₃), 34.0 (s, 4 C, CMe₃), 32.1 (d "t", 12 C, CH₃, ${}^{1}J_{CH} = 125.3$, ${}^{3}J_{CH} = 4.5$, 4.7 Hz), 30.6 (q, 6 C, CH₃, ${}^{1}J_{CH} = 125.1$ Hz). $- C_{34}H_{58}$ (466.8): ber. C 87.48, H 12.52; gef. C 86.90, H 12.20.

- * Herrn Professor Helmut Werner zum 60. Geburtstag gewidmet.
- E. O. Fischer, S. Schreiner, *Chem. Ber.* **1960**, *93*, 1417–1424. P. Jutzi, K.-H. Schwartzen, *Chem. Ber.* **1989**, *122*, 287–288. [1]
- [2]

- [14] P. Julzi, K.-H. Schwartzen, Chem. Den. 1707, 122, 207-200.
 [13] W. Frank, J. Organomet. Chem. 1990, 386, 177-186.
 [14] H. Sitzmann, J. Organomet. Chem. 1988, 354, 203-214.
 [15] H. Sitzmann, Z. Naturforsch., Teil B 1989, 44, 1293-1297.
 [16] [16] 1,3,5-Tri-tert-butylcyclopentadien wurde 1989 erstmals im Detail beschrieben^[5]. ^[6b] Ein Tabelleneintrag in Methoden Orga (Lawkow Wayl Müller). Bd. V/Ic. Thieme. Stutta. Org. Chem. (Houben-Weyl-Müller), Bd. V/Ic, Thieme, Stutt-gart, 1970, S. 664, gibt experimentelle Hinweise zur Herstellung von 1,3,5-Tri-tert-butylcyclopentadien (dort als 1,2,4-Isomer bezeichnet). Das Verfahren wurde von uns nachgearbeitet und optimiert: ^[6c] H. Sitzmann, P. Zhou, G. Wolmershäuser, *Chem. Ber.* **1994**, *127*, 3–9. – ^[6d] In hoher Ausbeute ist 1,3,5-Tri-*teri*butylcyclopentadien durch Phasentransfer-katalysierte Alkylie-
- rung zugänglich: E. V. Dehmlow, Ch. Bollmann, Z. Naturforsch., Teil B, 1993, 48, 457–460 und dort zitierte Literatur.
 ^[7] ^[7a] Ch. Janiak, H. Schumann, Adv. Organomet. Chem. 1991, 33, 291–393. ^[7b] J. Okuda, Top. Curr. Chem. 1991, 160, 97–145.
 ^[7] P. Jutzi, J. Organomet. Chem. 1990, 400, 1–17.
- [8] A. L. Rheingold, A. D. Uhler, A. G. Landers, Inorg. Chem. 1983, 22, 3255 Ś258
- V. Paulat, B. Krebs, Angew. Chem. 1976, 88, 28-29; Angew. Chem. Int. Ed. Engl. 1976, 15, 39-40.
 M. Baier, P. Bissinger, H. Schmidbaur, Organometallics 1993,
- 12, 2208-2212
- ^[11] M. J. Hampden-Smith, D. S. Williams, A. L. Rheingold, Inorg. *Chem.* **1990**, 29, 4076–4081
- P. Jutzi, T. Wippermann, C. Krüger, H.-J. Kraus, Angew. Chem. 1983, 95, 244; Angew. Chem. Int. Ed. Engl. 1983, 22, 250.
- Zum Nachweis der Propen-Eliminierung wurde nach beendeter Reaktion das bis dahin verschlossene Reaktionsgefäß geöffnet, um flüchtige Produkte zusammen mit wenigen ml THF in eine

mit Brom beschickte und in flüssigen Stickstoff eingetauchte Kühlfalle zu kondensieren. Nach Auftauen wurde ein Gemisch von Propen-Bromierungsprodukten durch ¹³C-NMR-Spektroskopie nachgewiesen.

- ^[14] Zu den katalytischen Eigenschaften von BiCl₃ als Lewis-Säure

- ^[14] Zu den katalytischen Eigenschaften von BiCl₃ als Lewis-Säure siehe z. B. C. Le Roux, M. Marval, M. E. Borredon, H. Gaspard-Iloughmane, J. Dubac, *Tetrahedron Lett.* **1992**, *33*, 1053–1054, und dort zitierte Literatur.
 ^[15] J.-R. Hamon, J.-Y. Saillard, L. Toupet, D. Astruc, J. Chem. Soc., Chem. Commun. **1989**, 1662–1663.
 ^[16] K. H. Whitmire, H. W. Roesky, S. Brooker, G. M. Sheldrick, J. Organomet. Chem. **1991**, *402*, C4–C7.
 ^[17] I. D. Tilley, R. A. Andersen, B. Spencer, H. Ruben, A. Zalkin, D. H. Templeton, *Inorg. Chem.* **1980**, *19*, 2999. ^[17b] R. Brand, H.-P. Krimmer, H.-J. Lindner, V. Sturm, K. Hafner, *Tetrahedron Lett.* **1982**, *23*, 5131–5134. ^[17c] A. Escher, W.

Rutsch, M. Neuenschwander, *Helv. Chim. Acta*, **1986**, *69*, 1644–1654. – ^[17d] T. F. Berlitz, H. Sinning, J. Lorberth, U. Müller, Z. Naturforsch., Teil B, **1988**, *43*, 744–748. – ^[17e] H. Sitzmann, R. Boese, *Angew. Chem.* **1991**, *103*, 1027–1029; *Angew. Chem. Int. Ed. Engl.* **1991**, *28*, 971–973. – ^[17f] H. Sitzmann, H. Bock, R. Boese, T. Dezember, Z. Havlas, W. Kaim, M. Machersenk, L. Zarathu, L. Marken, J. J. M. Moscherosch, L. Zanathy, J. Am. Chem. Soc. 1993, 115, 12003-12009.

- [18] H. Sitzmann, unveröffentlicht.
 [19] Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissen-schaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-57783, der Autorennamen und des Zeitschriftenzitats angefordert werden.

[345/93]